

INTRODUCTION

It's a unique challenge for mechanical engineers to design and select the air distribution items. the selection and choice of air distribution equipment involves product efficiency to meet space requirement as well as architectural features which compliment the interior design in the modern HVAC system, the wrongly chosen air outlets lead to failure of the entire HVAC system.
The considerations while doing a perfect and competitive selection of air outlet are occupant comfort, energy conservation, air quality and the cost. It is the foremost purpose of this Air Distribution Engineering section. The details provided in this section are referred from ASHRAE Handbooks and standards.

TERMINOLOGY

Grille: A covering for any area through which air passes.
Register: A grille equipped with a damper or control valve.
Diffuser: An outlet discharging supply air in various directions and planes.
Slotted outlet: A long narrow air distribution outlet comprised of deflecting members; located in the ceiling, side wall or sill with an aspect ratio greater than 10.Designed to distribute supply air in varying directions and planes and arranged to promote mixing of primary air and secondary room air.
Return: An outlet for return or exhaust air.
Damper: A device used to control the volume of air passing through an outlet or inlet. Aspect ratio: Ratio of the length to the width of rectangular opening.
Free area= Effective area: Total minimum area of the opening in air outlet through which air can pass.
Throw: The horizontal or vertical axial distance an air stream travels after leaving an air outlet before the maximum stream velocity is reduced to a specified terminal velocity (e.g., 50, 100, 150, or 200 fpm) defined by ASHRAE standard 70.

Terminal velocity: The maximum air stream velocity at the end of the throw.
Primary air: The air coming directly from the outlet.
Secondary air: The room air which is picked up and carried along by the primary air.
Total air: Mixture of primary and secondary air.
Stratified zone: A region in which room air velocity is less than $0.075 \mathrm{~m} / \mathrm{sec}(15 \mathrm{FPM})$.
Draft: Undesired local cooling of a body caused by low temperature and movement of air. Isothermal jet: Air jet with the same temperature as the surrounding air.
Non isothermal jet: Air jet with an initial temperature different from the surrounding air Jet velocity = Face velocity = Outlet velocity: The average velocity of air passing from the outlet, measured in the plane of the opening.

RECOMMENDED NOISE CRITERIA FOR ROOMS AND FACE VELOCITY

TYPE	SPACE	NR LEVEL	RECOMMENDED FACE VELOCITY m/s (F.P.M)	
Auditoriums And Music Halls	Concert and Opera Halls, Studios for sound reproduction Legitimate Theatres, Multi-Purpose Halls Movies theatres, Lectures Halls, Planetarium, TV Audience Studios Lobbies	$\begin{aligned} & 20-25 \\ & 25-30 \\ & 30-35 \\ & 35-45 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5-3.75 \\ & 2.5-3.75 \\ & 2.5-5.0 \end{aligned}$	$\begin{gathered} (500) \\ (500-750) \\ \\ (500-750) \\ (500-1000) \end{gathered}$
Churches And Schools	Sanctuaries Libraries, schools and classrooms Laboratories Recreation halls, corridors and halls	$\begin{aligned} & 20-30 \\ & 30-40 \\ & 35-45 \\ & 35-50 \end{aligned}$	$\begin{aligned} & 2.5-3.75 \\ & 2.5-5.0 \\ & 2.5-5.0 \\ & 2.5-6.5 \end{aligned}$	$\begin{gathered} (500-750) \\ (500-1000) \\ (500-1000) \\ (500-1300) \end{gathered}$
Offices	Boardroom Executive office Conference rooms General Open offices Halls and corridors, computer room	$\begin{aligned} & 20-30 \\ & 30-40 \\ & 25-35 \\ & 35-50 \\ & 35-55 \end{aligned}$	$\begin{aligned} & 2.5-3.75 \\ & 2.5-5.0 \\ & 2.5-3.75 \\ & 2.5-6.5 \\ & 2.5-6.5 \end{aligned}$	$\begin{gathered} (500-750) \\ (500-1000) \\ (500-750) \\ (500-1300) \\ (500-1300) \end{gathered}$
Hospitals And Clinics	Intensive care wards, Private room Hospitals wards, Operating room Waiting rooms and reception areas Wash rooms and toilets	$\begin{aligned} & 25-35 \\ & 30-40 \\ & 35-45 \\ & 40-50 \end{aligned}$	$\begin{aligned} & 2.5-3.75 \\ & 2.5-5.0 \\ & 2.5-5.0 \\ & 3.0-6.5 \end{aligned}$	$\begin{gathered} (500-750) \\ (500-1000) \\ (500-1000) \\ (600-1300) \end{gathered}$
Hotels/ Motels	Individual Rooms, suites or Ball Rooms Halls, corridors, Lobbies Kitchen and laundries, bars and lounges	$\begin{aligned} & 30-40 \\ & 35-40 \\ & 40-50 \end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & 2.5-5.0 \\ & 3.0-6.5 \end{aligned}$	$\begin{aligned} & (500-1000) \\ & (500-1000) \\ & (600-1300) \end{aligned}$
Public	Public Libraries, museums, court rooms Post offices, Banking Areas, Department Stores, Restaurants, Night Clubs, Bowling Alleys, Gymnasiums Cocktail Lounges	$\begin{aligned} & 30-40 \\ & 35-45 \\ & 35-50 \end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & 2.5-5.0 \\ & 2.5-6.5 \end{aligned}$	$\begin{aligned} & (500-1000) \\ & (500-1000) \\ & (500-1300) \end{aligned}$
Transportation	Ticket sales offices Lounges, Waiting Rooms	$\begin{aligned} & 30-40 \\ & 35-50 \end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & 2.5-6.5 \end{aligned}$	$\begin{aligned} & (500-1000) \\ & (500-1300) \end{aligned}$
Stores Retail	Clothing Stores, Department Stores (upper floor) Department Stores (main floor), small Retail Stores, Supermarkets	$\begin{aligned} & 35-45 \\ & 40-50 \end{aligned}$	$\begin{aligned} & 2.5-5.0 \\ & 3.0-6.5 \end{aligned}$	$\begin{aligned} & (500-1000) \\ & (600-1300) \end{aligned}$
Factory Areas	Light maintenance shops, Assembly lines Office area, control room Heavy industrial processing	$\begin{aligned} & 40-50 \\ & 40-50 \\ & 60-75 \end{aligned}$	3.0-6.5 3.0-6.5 6.5-10.0	$\begin{array}{r} (600-1300) \\ (600-1300) \\ (1300-2000) \end{array}$

Outdoor Air Required for Ventilation*

OCCUPANCY	CFM PER PERSON
Spaces in which there is no smoking AUDITORIUMS CHURCHES THEATERS	
Spaces in which there is moderate smoking	5 TO 7.5
BARBER SHOPS	
BEAUTY PARLORS	
FUNERAL PARLORS	
OPEN SPACES IN BANKS	7.5 TO 10
RETAIL SHOPS	
APARTMENTS	
DRUGSTORES HAVING LUNCH COUNTERS	
HOSPITAL ROOMS	
HOTEL ROOMS	
OPEN SPACES IN GENERAL OFFICES	
RESTAURANTS AND PUBLIC DINING ROOMS	
Spaces in which there is heavy smoking	20 TO 30
BROKERS BOARD ROOMS	
DIRECTORS ROOMS	
NIGHT CLUBS	
PRIVATE OFFICES	
TAVERNS AND COCKTAIL BARS	

* TRAIN

Recommended and Maximum Duct Velocities for Conventional Systems **

Designation	Recommended Velocities, Fpm		
	Residences	Schools, Theaters, Public Buildings	Industrial Buildings
Outdoor Air Intakes ${ }^{\text {a }}$ Filters ${ }^{\text {a }}$ Heating coils ${ }^{\text {a }}$	$\begin{aligned} & \hline 500 \\ & 250 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 350 \\ & 600 \\ & \hline \end{aligned}$
Air Washers Fan Outlets	$\begin{gathered} 500 \\ 1000-1600 \end{gathered}$	$\begin{gathered} 500 \\ 1300-2000 \end{gathered}$	$\begin{gathered} 500 \\ 1600-2400 \end{gathered}$
Main Ducts Branch Ducts Branch Risers	$\begin{gathered} 700-900 \\ 600 \\ 500 \\ \hline \end{gathered}$	$\begin{gathered} 1000-1300 \\ 600-900 \\ 600-700 \\ \hline \end{gathered}$	$\begin{gathered} 1200-1800 \\ 800-1000 \\ 800 \\ \hline \end{gathered}$
	Maximum Velocities, Fpm		
Outdoor Air Intakes ${ }^{\text {a }}$ Filters ${ }^{\mathrm{a}}$ Heating Coils ${ }^{\text {a }}$	$\begin{aligned} & 800 \\ & 300 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 900 \\ & 350 \\ & 600 \end{aligned}$	$\begin{gathered} 1200 \\ 350 \\ 700 \\ \hline \end{gathered}$
Air Washers Fan Outlets	$\begin{gathered} 500 \\ 1700 \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ 1500-2200 \\ \hline \end{gathered}$	$\begin{gathered} 500 \\ 1700-2800 \\ \hline \end{gathered}$
Main Ducts Branch Ducts Branch Risers	$\begin{gathered} 800-1200 \\ 700-1000 \\ 650-800 \end{gathered}$	$\begin{gathered} 1100-1600 \\ 800-1300 \\ 800-1200 \end{gathered}$	$\begin{aligned} & 1300-2200 \\ & 1000-1800 \\ & 1000-1600 \end{aligned}$

${ }^{\text {a }}$ These velocities are for total face area, not the net free area; other velocities in table are for net free area.
** ASHRAE

Recommended Return Grilles Velocities*

GRILLE LOCATION	F.P.M. Over Cross Area
Commercial	
Above occupied zone	800 and above
Within occupied zone not near seats	600-800
Within occupied zone near seats	400-600
Door or wall louvers	500-1000
Undercutting of doors	$600^{\text {a }}$
Industrial	800 and above
Residential	400

* Carrier
${ }^{\text {a }}$ Thru undercut area

Weight of duct material **

Gauge	Galvanized steel u.s. gauge		Aluminum B\&S gauge		Stainless steel u.s. gauge	
	Thickness mm	Weight $\mathrm{Kg} / \mathrm{m}^{2}$	$\begin{gathered} \text { Thickness } \\ \mathrm{mm} \end{gathered}$	Weight $\mathrm{Kg} / \mathrm{m}^{2}$	$\begin{gathered} \text { Thickness } \\ \mathrm{mm} \\ \hline \end{gathered}$	Weight $\mathrm{Kg} / \mathrm{m}^{2}$
28	-----	-----	-----	-----	0.41	3.227
26	0.56	4.43	-----	-----	0.48	3.863
24	0.71	5.653	0.51	1.408	0.64	5.134
22	0.86	6.875	0.64	1.736	0.79	6.406
$20^{\text {a }}$	1.00	8.098	0.81	2.229	0.97	7.726
18	1.32	10.543	1.01	2.812	1.27	10.269
16	1.63	12.988	1.3	3.540	1.6	12.861
14	2.00	16.044	1.62	4.469	2.00	16.039
12	---	-----	1.80	5.037	-----	-----

** ASHRAE

Recommended construction for ***
Rectangular sheet-metal Ducts (Low pressure)

Duct Dimension Inch	Galvanized mm	Aluminum mm
UP Thru 12	0.5	0.6
13 Thru 30	0.6	0.7
31 Thru 54	0.75	0.85
55 Thru 84	1.00	1.25
Over 84	1.25	1.40

*** building national regulations
Check Figures for Cooling Estimates.*

Classification		SensibleHeat factor			Grand total heat ${ }^{\text {a }}$			Room sensible heat ${ }^{\text {a }}$			Square feet per person			Watts per square foot			Tons per person			Cfm per Square foot		
		Low	Avg	High																		
Apartments and hotel guest rooms		0.80	0.84	0.94	13	20	30	9	12	17	100	175	325	0.2	0.6	0.9	0.445	0.58	0.72	0.5	0.7	0.9
Art museums and libraries		0.73	0.83	0.90	30	51	75	20	35	45	40	60	80		1.0	2.0	0.12	0.23	0.40	0.92	1.6	2.1
Banks (not incl. private offices)		0.75	0.83	0.88	35	54	75	21	38	48	40	59	80	0.87	1.5	2.3	0.135	0.258	0.405	1.1	2.0	2.5
Dept. stores	Basement	0.65	0.73	0.85	24	34	39	16	21	26	20	25	30	0.79	1.9	2.1	0.066	0.113	0.126	0.75	1.0	1.2
	Main floor	0.72	0.80	0.88	26	40	60	18	30	43	16	25	44	1.43	3.0	5.1	0.078	0.106	0.145	0.85	1.4	2.0
	Upper floors	0.74	0.82	0.94	24	31	40	16	21	26	39	56	73	1.19	1.9	3.0	0.104	0.125	0.227	0.75	1.0	1.2
Hotels-public spaces		0.74	0.82	0.89	32	53	74	20	36	46	40	58	78	0.85	1.2	2.2	0.13	0.24	0.41	0.92	1.7	2.1
Office buildings		0.84	0.91	0.93	23	36	52	19	26	37	81	110	130	0.83	1.66	2.6	0.204	0.283	0.389	1.0	1.3	1.9
Offices-small suites		0.82	0.89	0.93	33	45	64	24	33	43	49	73	128	0.53	1.44	3.4	0.195	0.308	0.463	1.2	1.7	2.2
Restaurants		0.65	0.72	0.80	90	118	155	40	52	80	13	15	17	1.50	1.7	2.0	0.121	0.164	0.225	1.8	2.4	3.7
Specialty Shops	Beauty and barber	0.69	0.80	0.91	50	76	117	33	56	90	25	41	46	$2.72{ }^{\text {b }}$	$5.1{ }^{\text {b }}$	$9.3{ }^{\text {b }}$	0.140	0.262	0.392	1.5	2.6	4.2
	Dress	0.70	0.796	0.85	35	43	65	20	26	35	30	40	50	0.74	1.77	3.5	0.087	0.143	0.271	0.9	1.2	1.6
	Drug	0.66	0.72	0.79	67	88	109	40	50	65	17	23	35	1.00	1.83	2.5	0.180	0.198	0.24	1.8	2.3	3.0
	$5 ¢$ and $10 ¢$	0.65	0.725	0.825	35	55	100	15	31	42	15	24	36	1.14	2.5	5.4	0.075	0.102	0.168	0.7	1.4	2.0
	Hat	0.72	0.79	0.86	38	45	65	22	28	40	30	40	50	0.75	1.8	2.7	0.088	0.145	0.273	1.0	1.3	1.9
	Shoe	0.74	0.795	0.877	40	55	80	26	35	45	19	30	50	1.20	1.80	3.0	0.100	0.146	0.185	1.2	1.6	2.1
Theaters and auditoriums		0.65	0.70	0.722	$635^{\text {c }}$	$667^{\text {c }}$	$707^{\text {c }}$	$325^{\text {c }}$	$363{ }^{\text {c }}$	$385{ }^{\text {c }}$	6.06	7.63	8.65				0.053	0.055	0.059	$15^{\text {d }}$	$20^{\text {d }}$	$30^{\text {d }}$

Notes: ${ }^{\text {a }}$ Btu per hour per square foot. ${ }^{b}$ Total wattage for lights and equipment. ${ }^{\mathrm{c}}$ Btu per hour per seat. ${ }^{\mathrm{d}} \mathrm{Cfm}$ per seat.

* Modern Air Conditioning, Heating, and Ventilating

Unit Conversions

Length	$\begin{aligned} & 1 \mathrm{in} \\ & 1 \mathrm{ft} \end{aligned}$		$\begin{aligned} &= 25.4 \mathrm{~mm} \\ &= 0.3048 \mathrm{~m} \\ & \hline \end{aligned}$			
Area	$\begin{aligned} & 1 \mathrm{in}^{2} \\ & 1 \mathrm{ft}^{2} \\ & \hline \end{aligned}$		$\begin{aligned} & =645.16 \mathrm{~mm}^{2} \\ & =0.0929 \mathrm{~m} 2 \end{aligned}$			
Volume	$1 \mathrm{in}^{3}$ $=16387 \mathrm{~mm}^{3}$ $1 \mathrm{ft}^{3}$ $=0.0283 \mathrm{~m}^{3}$ 1 UK gallon (liquid) $=4.546$ litre 1 US gallon (liquid) $=3.785$ litre					
Mass	1 ounce (av) $=28.3$ (gramme) 1 gr (grain) $=0.0648 \mathrm{~g}$ 1 lb $=0.4536 \mathrm{~kg}$					
Force	1 lbf $=0.4536 \mathrm{kp}$ 1 lbf $=0.00445 \mathrm{kN}$ 1 kp $=0.00981 \mathrm{kN}$					
		Lbf/in ${ }^{2}$	Lbf/ft ${ }^{2}$	砤 $\mathrm{kg} / \mathrm{m}^{2}$	$\mathrm{KPa}=\mathrm{KN} / \mathrm{m}^{2}$	Torr $=\mathrm{mm} \mathrm{Hg}$
Pressure	$\begin{array}{ll} 1 \mathrm{lbf} / \mathrm{in}^{2} & = \\ 1 \mathrm{lbf} / \mathrm{ft}^{2}(\mathrm{psf}) & = \\ 1 \mathrm{~kg} / \mathrm{m}^{2} & = \\ 1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m}^{2} & = \\ 1 \mathrm{Torr}=\mathrm{mmHg} & = \end{array}$	1 0.00694 0.00142 0.145 0.0193	144 1 0.2048 20.556 2.78	703 4.882 8 1 6 102 13.59	6.895 0.04788 0.00981 1 0.133	$\begin{gathered} \hline 51.71 \\ 0.36 \\ 0.0736 \\ 7.50 \\ 1 \end{gathered}$
Density	$1 \mathrm{lb} / \mathrm{ff}^{3} / \mathrm{pcf}=16.018 \mathrm{~kg} / \mathrm{m}^{3}$					
Energy	Btu			Kcal	KJ	kWh
	1 Btu $=$ 1 kcal $=$ 1 KJ $=$ 1 kWh $=$ 	13.9680.9483412		$\begin{gathered} 0.252 \\ 1 \\ 0.239 \\ 860 \end{gathered}$	$\begin{gathered} 1.055 \\ 4.187 \\ 1 \\ 3600 \end{gathered}$	$\begin{gathered} \hline 0.00029 \\ 0.001163 \\ 0.000278 \\ 1 \end{gathered}$
	Btu/ft hF			Btu in/ft ${ }^{2} \mathrm{hF}$	$\mathrm{Kcal} / \mathrm{mhK}$	W/m K
Thermal conductivity	$1 \mathrm{Btu} / \mathrm{ft} \mathrm{hf}$ $=$ $1 \mathrm{Btu} \mathrm{in} / \mathrm{ft}^{2} \mathrm{hF}$ $=$ $1 \mathrm{kcal} / \mathrm{m} \mathrm{hK}^{2}$ $=$ $1 \mathrm{~W} / \mathrm{m} \mathrm{K}^{2}$ $=$	10.08330.6720.578		$\begin{gathered} 12 \\ 1 \\ 8.064 \\ 6.933 \end{gathered}$	$\begin{gathered} 1.488 \\ 0.124 \\ 1 \\ 0.860 \end{gathered}$	$\begin{gathered} 1.73 \\ 0.144 \\ 1.163 \\ 1 \end{gathered}$
Thermal conductance	Btu/ft ${ }^{2} \mathrm{hF}$			Btu in/ $/ \mathrm{ft}^{2} \mathrm{hF}$	$\mathrm{Kcal} / \mathrm{m}^{2} \mathrm{hK}$	W/m ${ }^{2} \mathrm{~K}$
	 $1 \mathrm{Btu} / \mathrm{ft} \mathrm{hF}$ $=$ $1 \mathrm{Btu} \mathrm{in} / \mathrm{ft}^{2} \mathrm{hF}$ $=$ $1 \mathrm{kcal} / \mathrm{m} \mathrm{hK}$ $=$ $1 \mathrm{~W} / \mathrm{m} \mathrm{K}$ $=$	$\begin{gathered} 1 \\ 0.0694 \\ 0.00142 \\ 0.00122 \\ \hline \end{gathered}$		144 1 0.2048 0.1761	$\begin{gathered} \hline 703 \\ 4.882 \\ 1 \\ 0.860 \\ \hline \end{gathered}$	$\begin{gathered} 818 \\ 5.678 \\ 1.163 \\ 1 \end{gathered}$
Heat flow	$\begin{aligned} 1 \mathrm{Btu} / \mathrm{ft} \mathrm{~h} & =0.8268 \mathrm{kcal} / \mathrm{m} \\ 1 \mathrm{Btu} / \mathrm{ft} \mathrm{~h} & =0.9615 \mathrm{~W} / \mathrm{m} \\ 1 \mathrm{kcal} / \mathrm{m} \mathrm{~h}^{2} & =1.163 \mathrm{~W} / \mathrm{m} \\ & \\ 1 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{~h} & =2.712 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{H} \\ 1 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{~h} & =3.155 \mathrm{~W} / \mathrm{m}^{2} \\ 1 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~h} & =1.163 \mathrm{~W} / \mathrm{m}^{2} \end{aligned}$					
Temperature	$\begin{aligned} & { }^{\circ} \mathrm{F}=9 / 5^{\circ} \mathrm{C}+32 \\ & { }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right) \end{aligned}$					

